Genetic influences on survival time after severe hemorrhage in inbred rat strains.
نویسندگان
چکیده
To find a genetic basis for differential ability to survive severe hemorrhage, we previously showed eightfold differences in survival times among inbred rat strains. We assumed that rat strains had similar normalized blood volumes (NBV; ml/100 g body wt). As NBV might vary among strains and constitute one genetic variable affecting survival time to hemorrhage, in experiment 1 of the current studies we first measured total blood volumes and calculated NBV in specific inbred rat strains (Brown Norway/Medical College of Wisconsin, BN; Dark Agouti, DA; Fawn Hooded Hypertensive, FHH; Lewis, LEW; and Dahl Salt-Sensitive, SS) previously found to be divergent in survival time. NBV differed by 20% (P < 0.01; BN > SS > FHH = LEW = DA) and had a heritability (h(2)) of 0.56. Hence, differential survival times in our previously published study might reflect strain-dependent differences in NBV. Then studies were conducted wherein rats were catheterized and, ∼24 h later, 47% of their blood volume was removed; these rats were observed for a maximum of 4 h. In experiment 2, blood volumes were measured the day prior to hemorrhage. Percent survival and survival time did not differ among strains. To obviate possible confounding effects of blood volume determination, in experiment 3 the average NBV for each strain was used to determine hemorrhage volumes. Percent survival (P < 0.01) and survival times (P < 0.001) were different with DA demonstrating the best (62.5%, 190 ± 29 min) and BN the worst (0%, 52 ± 5 min) survival responses. These data indicate that both blood volume and survival time after hemorrhage in rats are heritable quantitative traits, and continue to suggest that genetic assessment of these phenotypes might lead to novel therapeutics to improve survival to hemorrhage.
منابع مشابه
Is survival time after hemorrhage a heritable, quantitative trait?: an initial assessment.
Enhancing survival to hemorrhage of both civilian and military patients is a major emphasis for trauma research. Previous observations in humans and outbred rats show differential survival to similar levels of hemorrhage. In an initial attempt to determine potential genetic components of such differential outcomes, survival time after a controlled hemorrhage was measured in 15 inbred strains of...
متن کاملLife or Death? A Physiogenomic Approach to Understand Individual Variation in Responses to Hemorrhagic Shock
Severe hemorrhage due to trauma is a major cause of death throughout the world. It has often been observed that some victims are able to withstand hemorrhage better than others. For decades investigators have attempted to identify physiological mechanisms that distinguish survivors from nonsurvivors for the purpose of providing more informed therapies. As an alternative approach to address this...
متن کاملArterial blood gases, electrolytes, and metabolic indices associated with hemorrhagic shock: inter- and intrainbred rat strain variation.
We have previously shown interstrain variation (indicating a genetic basis), and intrastrain variation in survival time after hemorrhage (STaH) among inbred rat strains. To assist in understanding physiological mechanisms associated with STaH, we analyzed various arterial blood measures (ABM; pH, Paco2, oxygen content, sodium, potassium, glucose, bicarbonate, base excess, total CO2, and ionized...
متن کاملCardiac mitochondrial proteomic expression in inbred rat strains divergent in survival time after hemorrhage.
We have previously identified inbred rat strains differing in survival time to a severe controlled hemorrhage (StaH). In efforts to identify cellular mechanisms and ultimately genes that are important contributors to enhanced STaH, we conducted a study to characterize potential differences in cardiac mitochondrial proteins in these rats. Inbred rats from three strains [Brown Norway/Medical Coll...
متن کاملMETABOLIC ACIDOSIS AND SEVERE HYPOTENSION: INFLUENCE ON SURVIVAL TIME AND SHOCK PERIOD DURING HEMORRHAGE IN THE CAT
Metabolic acidosis and severe hypotension are the main causes of irreversibility during hemorrhagic shock. The influence of these two factors on durations of shock period and survival time were studied in four groups of anesthetized cats. In group I the animals were made hypotensive by reducing mean arterial blood pressure (Pa) to 45 mmHg with concurrent metabolic acidosis. [n group II the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 43 12 شماره
صفحات -
تاریخ انتشار 2011